90 research outputs found

    Welfarism and the Assessments of Social Decision Rules

    Get PDF
    Articl

    Effects of Noise on Galaxy Isophotes

    Get PDF
    The study of shapes of the images of objects is an important issue not only because it reveals its dynamical state but also it helps to understand the object's evolutionary history. We discuss a new technique in cosmological image analysis which is based on a set of non-parametric shape descriptors known as the Minkowski Functionals (MFs). These functionals are extremely versatile and under some conditions give a complete description of the geometrical properties of objects. We believe that MFs could be a useful tool to extract information about the shapes of galaxies, clusters of galaxies and superclusters. The information revealed by MFs can be utilized along with the knowledge obtained from currently popular methods and thus could improve our understanding of the true shapes of cosmological objects.Comment: 3 pages, 1 figure, to appear in "The IGM/Galaxy Connection - The Distribution of Baryons at z=0" Conference Proceeding

    The morphological and dynamical evolution of simulated galaxy clusters

    Get PDF
    We explore the morphological and dynamical evolution of galaxy clusters in simulations using scalar and vector-valued Minkowski valuations and the concept of fundamental plane relations. In this context, three questions are of fundamental interest: 1. How does the average cluster morphology depend on the cosmological background model? 2. Is it possible to discriminate between different cosmological models using cluster substructure in a statistically significant way? 3. How is the dynamical state of a cluster, especially its distance from a virial equilibrium, correlated to its visual substructure? To answer these questions, we quantify cluster substructure using a set of morphological order parameters constructed on the basis of the Minkowski valuations (MVs). The dynamical state of a cluster is described using global cluster parameters: in certain spaces of such parameters fundamental band-like structures are forming indicating the emergence of a virial equilibrium. We find that the average distances from these fundamental structures are correlated to the average amount of cluster substructure for our cluster samples during the time evolution. Furthermore, significant differences show up between the high- and the low-Omega models. We pay special attention to the redshift evolution of morphological characteristics and find large differences between the cosmological models even for higher redshifts.Comment: A and A, accepte

    Extended morphometric analysis of neuronal cells with Minkowski valuations

    Full text link
    Minkowski valuations provide a systematic framework for quantifying different aspects of morphology. In this paper we apply vector- and tensor-valued Minkowski valuations to neuronal cells from the cat's retina in order to describe their morphological structure in a comprehensive way. We introduce the framework of Minkowski valuations, discuss their implementation for neuronal cells and show how they can discriminate between cells of different types.Comment: 14 pages, 18 postscript figure

    Morphological fluctuations of large-scale structure: the PSCz survey

    Get PDF
    In a follow-up study to a previous analysis of the IRAS 1.2Jy catalogue, we quantify the morphological fluctuations in the PSCz survey. We use a variety of measures, among them the family of scalar Minkowski functionals. We confirm the existence of significant fluctuations that are discernible in volume-limited samples out to 200Mpc/h. In contrast to earlier findings, comparisons with cosmological N-body simulations reveal that the observed fluctuations roughly agree with the cosmic variance found in corresponding mock samples. While two-point measures, e.g. the variance of count-in-cells, fluctuate only mildly, the fluctuations in the morphology on large scales indicate the presence of coherent structures that are at least as large as the sample

    Revealing components of the galaxy population through nonparametric techniques

    Get PDF
    The distributions of galaxy properties vary with environment, and are often multimodal, suggesting that the galaxy population may be a combination of multiple components. The behaviour of these components versus environment holds details about the processes of galaxy development. To release this information we apply a novel, nonparametric statistical technique, identifying four components present in the distribution of galaxy Hα\alpha emission-line equivalent-widths. We interpret these components as passive, star-forming, and two varieties of active galactic nuclei. Independent of this interpretation, the properties of each component are remarkably constant as a function of environment. Only their relative proportions display substantial variation. The galaxy population thus appears to comprise distinct components which are individually independent of environment, with galaxies rapidly transitioning between components as they move into denser environments.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    Mark correlations: relating physical properties to spatial distributions

    Get PDF
    Mark correlations provide a systematic approach to look at objects both distributed in space and bearing intrinsic information, for instance on physical properties. The interplay of the objects' properties (marks) with the spatial clustering is of vivid interest for many applications; are, e.g., galaxies with high luminosities more strongly clustered than dim ones? Do neighbored pores in a sandstone have similar sizes? How does the shape of impact craters on a planet depend on the geological surface properties? In this article, we give an introduction into the appropriate mathematical framework to deal with such questions, i.e. the theory of marked point processes. After having clarified the notion of segregation effects, we define universal test quantities applicable to realizations of a marked point processes. We show their power using concrete data sets in analyzing the luminosity-dependence of the galaxy clustering, the alignment of dark matter halos in gravitational NN-body simulations, the morphology- and diameter-dependence of the Martian crater distribution and the size correlations of pores in sandstone. In order to understand our data in more detail, we discuss the Boolean depletion model, the random field model and the Cox random field model. The first model describes depletion effects in the distribution of Martian craters and pores in sandstone, whereas the last one accounts at least qualitatively for the observed luminosity-dependence of the galaxy clustering.Comment: 35 pages, 12 figures. to be published in Lecture Notes of Physics, second Wuppertal conference "Spatial statistics and statistical physics

    Galaxy Zoo: The Environmental Dependence of Bars and Bulges in Disc Galaxies

    Full text link
    We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15810 galaxies at z<0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods, such that massive disc galaxies are more likely to host bars and bulges. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpc/h to 3 Mpc/h. These environmental correlations appear to be independent of each other: i.e., bulge-dominated disc galaxies exhibit a significant bar-environment correlation, and barred disc galaxies show a bulge-environment correlation. We demonstrate that approximately half (50 +/- 10%) of the bar-environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars. Likewise, we show that the environmental dependence of stellar mass can only explain a small fraction (25 +/- 10%) of the bar-environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence could be due to another galaxy property. Finally, by analyzing the projected clustering of barred and unbarred disc galaxies with halo occupation models, we argue that barred galaxies are in slightly higher-mass haloes than unbarred ones, and some of them (approximately 25%) are satellite galaxies in groups. We also discuss implications about the effects of minor mergers and interactions on bar formation.Comment: 20 pages, 18 figures; references updated; published in MNRA
    • 

    corecore